Exam. Code : 211002 Subject Code : 4278

8

M.Sc. (Mathematics) 2nd Semester MATH-565 : DIFFERENTIAL AND INTEGRAL EQUATIONS Time Allowed—3 Hours] [Maximum Marks—100 Note :— Attempt any *five* questions by selecting at least *one* question from each section. The **fifth** question may be attempted from any section.

SECTION—A

1. (a) Find the general integral of $2x(y+z^2) p+y(2y+z^2)q = z^3$. 8

- (b) Find a complete integral of $f = (p^2 + q^2)y-qz = 0$, using Charpit's method. 12
- 2. (a) By Jacobi's method, solve the equation $p^2x + q^2y = z.$ 12

(b) Find a complete integral of zpq - p - q = 0.

SECTION-B

3. Solve the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$, 0 < x < 1, t > 0subject to the conditions y(0, t) = y(1, t) = 0; y(x, 0) = x(1 - x), $y_t(x, 0) = 0$, $0 \le x \le 1$. 20

4. Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, $-\infty < x < \infty, y > 0$ subject to the conditions $u(x, 0) = f(x), -\infty < x < \infty, u$ is bounded as $y \to \infty$, u and u_x vanish as $|x| \to \infty$. 20 7395(2519)/EBH-2169 1 (Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

SECTION-C

5. Solve the Volterra integral equation $y(x) = 1 + \int_{0}^{1} xt y(t) dt$.

OC USG ENGLISH AND EVITOR LEOUTIONS

6. Using the method of successive approximations, solve the Volterra integral equation :

$$y(x) = 1 + x - \int_{0}^{x} y(t) dt, y_0(x) = 1.$$
 20

SECTION-D

7. Solve the Fredholm's integral equation :

$$y(x) = 2x - \pi + 4 \int_{0}^{\pi/2} \sin^2 xy(t) dt.$$
 20

Solve the Fredholm's integral equation, using the 8. method of successive approximations :

$$y(x) = f(x) + \lambda \int_{0}^{1} e^{x-t} y(t) dt$$
. 20

7395(2519)/EBH-2169 2 1200

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab